Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.

نویسندگان

  • D Yuan
  • J Zhang
  • S Yan
  • C Pan
  • G Alici
  • N T Nguyen
  • W H Li
چکیده

In this paper, 3D particle focusing in a straight channel with asymmetrical expansion-contraction cavity arrays (ECCA channel) is achieved by exploiting the dean-flow-coupled elasto-inertial effects. First, the mechanism of particle focusing in both Newtonian and non-Newtonian fluids was introduced. Then particle focusing was demonstrated experimentally in this channel with Newtonian and non-Newtonian fluids using three different sized particles (3.2 μm, 4.8 μm, and 13 μm), respectively. Also, the effects of dean flow (or secondary flow) induced by expansion-contraction cavity arrays were highlighted by comparing the particle distributions in a single straight rectangular channel with that in the ECCA channel. Finally, the influences of flow rates and distances from the inlet on focusing performance in the ECCA channel were studied. The results show that in the ECCA channel particles are focused on the cavity side in Newtonian fluid due to the synthesis effects of inertial and dean-drag force, whereas the particles are focused on the opposite cavity side in non-Newtonian fluid due to the addition of viscoelastic force. Compared with the focusing performance in Newtonian fluid, the particles are more easily and better focused in non-Newtonian fluid. Besides, the Dean flow in visco-elastic fluid in the ECCA channel improves the particle focusing performance compared with that in a straight channel. A further advantage is three-dimensional (3D) particle focusing that in non-Newtonian fluid is realized according to the lateral side view of the channel while only two-dimensional (2D) particle focusing can be achieved in Newtonian fluid. Conclusively, this novel Dean-flow-coupled elasto-inertial microfluidic device could offer a continuous, sheathless, and high throughput (>10 000 s(-1)) 3D focusing performance, which may be valuable in various applications from high speed flow cytometry to cell counting, sorting, and analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.

Elasto-inertial focusing in viscoelastic fluids has attracted increasing interest in recent years due to its potential applications in particle counting and sorting. However, current investigations of the elasto-inertial focusing mechanisms have mainly been focused on simple straight channels with little attention being paid to curved channels. Herein, we experimentally explore the elasto-inert...

متن کامل

Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.

Particle focusing in planar geometries is essentially required in order to develop cost-effective lab-on-a-chips, such as cell counting and point-of-care (POC) devices. In this study, a novel method for sheathless particle focusing, called "Elasto-Inertial Particle Focusing", was demonstrated in a straight microchannel. The particles were notably aligned along the centerline of the straight cha...

متن کامل

Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid

School of Mechanical, Materials and M Wollongong, Wollongong, NSW 2522, Austra School of Mechanical Engineering, Nanjin Nanjing 210094, China. E-mail: junzhang@ Queensland Microand Nanotechnology C 4111, Australia School of Biological Sciences, University o Australia Illawarra Health and Medical Research Ins † Electronic supplementary informa 10.1039/c6ra25328h Cite this: RSC Adv., 2017, 7, 3461

متن کامل

Dean flow-coupled inertial focusing in curved channels.

Passive particle focusing based on inertial microfluidics was recently introduced as a high-throughput alternative to active focusing methods that require an external force field to manipulate particles. In inertial microfluidics, dominant inertial forces cause particles to move across streamlines and occupy equilibrium positions along the faces of walls in flows through straight micro channels...

متن کامل

Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids

We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2015